COST Action TU 0601 Robustness of structures

WG2 Modelling of exposures and vulnerability

ton vrouwenvelder tu delft

WG 2: Exposures and Vulnerability

activity 4: exposure scenario models activity 5: structural behaviour models

COST Action TU 0601 WG2 Robustness of structures

 $Risk = p(H_i)p(D_j|H_i)p(S_k|D_j)C(S_k)$

COST Action TU 0601 WG2 Robustness of structures

Factsheets Act 4 Hazard modelling

- Probabilistic modeling of exposure
- Explosion modelling
- Human error

Factsheets Act 5 Structural behaviour: vulnerability and robustness

- Modelling and analysis (3P)
- Steel (2P)
- Concrete (P)
- Composite (P)
- Timber
- Existing structures

Cost

COST Action TU 0601 WG2 Robustness of structures

May 2011

(P)

Activity 4: Exposure scenarios

Key words:

* normal loads

* accidental loads

human actions

human errors

***** unforeseeable actions

Cost

COST Action TU 0601 WG2 Robustness of structures

Kamagurka

Kamagurka

Activity 4: Exposure scenarios

Key words:

* normal loads

* accidental loads

human actions

human errors

*** unforeseeable actions**

Cost

COST Action TU 0601 WG2 Robustness of structures

JCSS (Joerg Schneider)

COST Action TU 0601 WG2 Robustness of structures

Unidentified conditions

objectively unknown (unforeseeable)

in principle known, but difficult to recognize (unforeseen)

known, but ignored for several reasons (not foreseen)

Difficult to distinguish All categories are a kind of human error Still: what is the probability to the (effect) of the event?

COST Action TU 0601 WG2 Robustness of structures

DATA ??

COST Action TU 0601 WG2 Robustness of structures

Scheider/Matousek (500 cases)

Lack of knowledge	25 %
Careless engineering	30 %
Real error	15 %
Accepted risk	20 %

Imam/Chryssanthopoulos (156 failures bridges, steel)

design	24 %
limited knowledge	23 %
natural hazard	19 %
human error	14 %
accidents	13 %

COST Action TU 0601 WG2 Robustness of structures

atistics The Netherlands (Ligtenberg, 1969)

fire	10 ⁻² in 50 jaar
errors	10 -3
wind	10-3
explosion	10-3
impact	3 10-4
overload	3 10-4

(collapse factor 10 to 100 lower)

stribution	over	members	[%]
------------	------	---------	-----

Ау	/yub	Yam	
Foundation	6	20	
Column and walls	11	30 (mostly walls)	
beams and trusses	11	30	
slabs and plates	34	10	
Connections	9		
others	33	10	
Total	100	100	

the more data the better

Thomas Bayes

but:

no data = no excuse.

18

Activity 5: Structural models

19

ctivity 5: Structural models

Fact sheet Modelling and analysis

Key words:

- * material, element, system behavior
- seometrical / physical nonlinear
- ***** large deformations, catenary / arching actions,
- * deformation capacity (joints),
- * 2D-3D
- Aynamic / static / simplified dynamic
 Aynamic
 Ayna
- fem / applied element method

Nonlinear static response and simplified dynamic effects Izzudin, 2008)

amic simulation for global FE models of a multistory building asniewski, 2009)

pplied Element Method

$Sk = p(H_i)p(D_j|H_i)p(S_k|D_j)C(S_k)$

removed column

	p(H) [50 year]	P(D H))
explosion	$2x10^{-3}$	0.10
fire	20×10^{-3}	0.01
human error	$3x10^{-2}$	0.01

Demonstration of:

- deterministic model
- probabilistic model
- robustness measures
- cost effectiveness of measures

